I aim to nurture, inspire, and train graduate students that share my passion and excitement for the scientific method, the continuous erosion of the limits of knowledge, the magnificent complexity of the evolved physiological systems that we call organisms, the unbelievable precision of the mechanisms regulating homeostasis and their disruption during diseases. My goal is to train PhD students the basic skills required to become independent scientists in biomedical research, primarily academic or biotech industry, in the future. Each student has a unique mix of previous knowledge, expectation, life history and goals. Additionally, life is often unpredictable, and not linear. Thus, this document represents merely a partial list of general principles guiding my advising style, and not complete or exhaustive list of statements (you will find and follow guidelines and requirements in the student’s handbook).

What a student can expect:

- Develop with me an innovative and unique research project (with no or minimal overlap with other PhD students or post doc) – the goal is to guarantee first authorship. At the same time, I strongly encourage and require collaborations, help and exchange of ideas and methods among lab members (and close collaborators). This often results in co-authorships for the student.
- Be trained by myself or senior lab members to perform established techniques, as well as receive full support and encouragement from me to develop innovative and unique techniques.
- Learn to perform rigorous and meaningful experiments. Use an ethical approach to animal research.
- Work on a mix of high-risk high-gain and lower risk projects. This approach guarantees meeting administrative guidelines for publication requirements, while also aiming to publish comprehensive and impactful papers.
- Publish papers, of course! The quality of the science published is critical to me, while the number of papers is irrelevant to define the quality of a PhD Thesis. We strive to publish the best science that a student (and myself) will be able and proud to present. Yet, I keep the scientific productivity high in my mind. Some numbers: In 21 years of scientific activity, myself and my lab had ~100 publications, i.e. an average of 4.5/year. Graduate students in my lab published an average of 5 papers from work performed during their time in my lab (range 3-12) – some paper took years after the thesis defense to publish; 2 are typically published before the thesis defense.
- A student can expect to work hard and perform many experiments. But this is always balanced with individual, and lab needs.
- Open line of communication with me; at the very minimum weekly one-on-one meetings when I`m very busy.
- Discuss experimental design and data obtained on a ~weekly base. Not just sharing the final publication-quality figures for my approval.
- To work with me and/or senior lab members on experiments, data analysis and paper writing.
- Expect to actively and proactively engage in collaborations with other labs and PIs who often have expertise different from mine.
- I’m a goal-oriented person and I do not check presence in the lab on a daily basis. One of the major benefits (or problem sometimes) of science is that our work can, in general, be very flexible. If the work is done well and is completed in a timely manner, personal flexibility is strongly supported. I work well with either night owl or early birds!
- I do not mandate lab attendance to one or more professional meetings of my choice (that would support my visibility, not yours). However, I do my best to encourage and support attendance to scientific meetings which genuinely interest or can help professional growth of a student.

What I expect from students:

- Dedication and passion in what you do.
- Hard work – but with a goal and method. Not just spending time at the bench or run experiments to show you are active.
• It is fun to explore new ideas/methods, but research should be directed to a goal and ideally (but not always) be hypothesis driven. To obtain results that fit the hypothesis, is always a relief! But unexpected results from well conducted experiments, often lead to new direction in research.
• Perform rigorous experiments and generate robust data. Data, and not hypotheses — for as strong and meaningful they are or seem — drive my science. I will not ask you to waste your time/project to test over and over a hypothesis or idea that I’m in love with or I “want” to be true.
• Share data and results on a ~weekly base. I don’t want to just see the final publication ready figures. I want to discuss results and experimental design.
• Work collaboratively, and be open to helping and being helped.

Graduate Stipend and Funding
• I have the responsibility to provide for funding of both the research and stipend for my trainees.
• At the same time, I expect my trainees to participate in the writing of their own fellowship grant proposals; occasionally to write smaller research grant proposals when directly related to their project. This is critically important to increase the resources for doing research in the lab as well as to build a strong CVs for the future.

Professionalism, work ethics and behavior in the lab.
• I expect my trainees to maintain an accurate and detailed laboratory notebook. It is critical it be accurate and sufficiently detailed such that every experiment could be understood and replicated by another individual.
• I expect my trainees to meet laboratory as well as program-related guidelines and deadlines.
• I strive to respect and support diversity and humanity in the broadest sense I possibly can. I expect my trainees to behave professionally and treat all others with respect. I do not tolerate lack of respect, racism, sexism, intolerance and aggressive behavior, fascism, nazism or other forms of negative ideologies.

Personal Life:
• Time for personal life, sport, vacation time etc will always be encouraged, supported and respected - while keeping university guidelines and research needs in mind.
• Lab mates are coworkers, but not automatically friends (having said that, I developed lifelong friendship with several lab members, including graduate students). I assume that each lab member has much more fun spending free time with their friends and significant others, rather than with me or with other lab members. This means that I do not discourage, but at the same time do not impose lab activities in the free time.